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Abstract. Investment in stock 

portfolios has never been a risk-free 

course of action as countless factors 

impinge on the end result of such a venture. Although fairly rewarding, 

the element of uncertainty involved keeps many potential investors 

away as they fail to adequately forecast what moves the stock market is 

going to make in the near future. The enticement of receiving returns, 

however, is appealing enough for investors to have their money 

invested in the stock market. But the ability to forecast the market 

remains their major necessity. In operational terms, there are two 

ways of forecasting the current and future values of any time series 

including stock indices. One way is to regress stock returns over all 

those factors that have an effect on stock market performance. The 

other method is making predictions on the basis of the past 

performance of the stock market. The current paper has adopted the 

second method of forecasting and has made use of the autoregressive 

integrated moving average (ARIMA) technique. Monthly stock returns 

data of KSE 100 Index was collected from 1997 to 2019 which 

translated into 266 observations. It was realized that the technique 

used in the study helped in adequately predicting stock returns, 

although only in the short run. The outcomes of this study may be of 

help for prospective stock market investors, specifically short-term, in 

deciding when, and when not, to extend their investments at Pakistan 

Stock Exchange. 
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Introduction 

The ability to predict the future can never be underestimated when it comes to 

investments. Since the future will always remain uncertain, investors will 

almost always be wondering about finding the appropriate time to invest their 

excess money. Stock market index speculation is no different than prediction of 

other types of investment as there are many factors involved with some being 
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very hard to predict. The movement of a stock market index represents the 

direction the economy is heading towards. Therefore, an increase in the Index 

connotes an increase in the share prices of companies of all, or most, of the 

sectors in an economy. It is probably for this reason that almost all type of 

investors do try to keep an eye over what is happening to the stock market 

index. 

Primarily there are two distinct methods of forecasting any time series. One 

method is to anticipate the direction the variable, in our case the stock market, 

is expected to move keeping in view all the factors (taken as explanatory 

variables in the regression model) that potentially affect it. Although more 

rational, this method involves a huge amount of data to be collected for all 

those influential factors. Also, many other, rather invisible or unmeasurable, 

factors that may affect the dependent variable may be missed out leading to 

biased results. There is, however, another method as well of forecasting a given 

time series, and that is, to anticipate its forthcoming values on the basis of its 

past values. In time series econometrics, models facilitating such kind of 

forecasting are becoming increasingly popular thanks to their superior ability to 

predict a given variable. The current study also uses one such model commonly 

known as the autoregressive integrated moving average model or the ARIMA 

model. This model allows for a time series to be forecasted based on its values 

in the previous period and also based on the previous values of its error term.  

Box and Jenkins in their famous book ‘Time Series Analysis: Forecasting 

and Control’ formulated a method, commonly known as the Box-Jenkins 

methodology, which enables a researcher to identify how many lagged values 

of a given variable and that of the error term effectively predict the future value 

of that variable (Box & Jenkins, 1970). The method, in a sense, employs what 

Gould was later found as saying “let the data speak for themselves” (Gould, 

1981, p.167). 

The objectives of the study are two-fold --- to see whether ARIMA model is 

capable of helping a researcher predict the future value(s) of KSE 100 Index, 

and, if yes, to determine how many previous values of the index and that of the 

previous values of its error term are effective in forecasting the current, or 

future, value of the index. The assertions from this study will help potential 

investors in determining the suitable time they should go for investing their 

funds in the capital market of stocks. 

Review of Literature 

Over time, there have been some studies conducted to forecast various time 

series variables using the ARIMA modeling technique. The model has been 

proved to be successful for prediction of many time series if not for all. We 
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have divided the review of literature section into two parts with the first part 

discussing studies that have used the ARIMA model for forecasting stock 

returns or stock market index and the second part revealing studies that have 

used the model for prediction of variables other than stocks. 

Beginning with the first part of the review, Gay (2016) involved the 

ARIMA model to determine the association between two macroeconomic 

variables --- oil prices and exchange rates --- and stock returns for Brazil, 

Russia, India and China. It was found in their study that neither the 

macroeconomic variables nor the past values of stock prices were effective in 

forecasting stock returns for BRIC countries. 

A big attempt was made by Mondal, Shit and Goswami (2014) who took 

56 stocks of India from different sectors with an intention to forecast their 

future returns using the ARIMA model. Their study concluded that the model 

was successful in its prediction for around 85% of the cases studied by them. 

An attempt was also made by Adebiyi, Adewumi and Ayo (2014) of using 

ARIMA for predicting stock returns of Zenith Bank and Nokia. They found the 

model to be a good predictor in the short run. Similar were the results obtained 

by Banerjee (2014) who also attempted to forecast Indian stock market index 

and found a short run prediction power of the model. 

There also have been studies conducted to anticipate variables other than 

stock prices or stock index. For instance, Jarrett (2010) used the model for 

anticipating earnings of corporations and used estimated corporate earnings 

through conventional methods. He concluded that ARIMA model was no better 

than the factor-based models for prediction of earnings. Raymond (1997) 

endeavored to predict real estate prices through the Box-Jenkins methodology 

and was successful in observing trends in it. In the same manner, application of 

the model was also made by Meyler, Kenny and Quinn (1998) for predicting 

inflation in Ireland. The focused more on minimizing estimation errors rather 

than maximizing the goodness of fit.  

ARIMA model was also successfully employed by Contreras et al (2003) 

for predicting electricity prices in Spain and California. Gilbert (2005) also 

used the model for multistage supply chain processes. He concluded that 

inventories, orders placed by customers, demands and lead times are all ARIMA 

processes and could be easily anticipated in the short run. Guha (2016) also 

employed the model for estimating gold prices in India and came up with a 

positive relationship of gold prices in the short run. 

Some researchers have also used the model for forecasting crop production. 

Among them were Manoj and Madhu (2014) forecasted the production of 
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Sugarcane in some Indian regions using ARIMA and found that the model 

nicely predicted sugarcane production for as much as five years. Similarly, 

Hamjah (2014) estimated the production of rice in Bangladesh and he also 

found the model helpful in predicting the time series in the short run.  

In an earlier study, Padhan (2012) assessed the productivity of 34 Indian 

crops. She found that the tea was highest predictable crop while the papaya 

was the lowest. Following her study, Jadhav, Reddy and Gaddi (2017) also 

attempted forecasting major Indian crops including, but not limited to, Ragi, 

Paddi and Maize in the Karnataka state of India. They found that the model 

was very accurate in its prediction of crop production overall. They used the 

model for predicting production of major Indian crops for 2020. 

The Box-Jenkins Methodology 

ARIMA modeling has long been used by researchers for time series forecasting. 

Researchers have been using different techniques for predicting their variables 

of interest using the precious data of that variable. In the regards, however, the 

most sought after technique to have ever been developed is the one known as 

the Box-Jenkins methodology devised by George Box and Gwilym Jenkins 

(Box and Jenkins, 1970). The method, of course, makes its predictions on the 

basis of the previous values of the variable concerned as well as the previous 

values of the error term. As a rule, the variable having the most number of 

observations available is more likely to be predicted finely than the one having 

a lesser number of previous observations. In this regards, Chatfield (1996) 

suggests at least as much as 50 observations of a variable for a decent forecast. 

There are some statisticians who argue the minimum number of observations 

should be 100 for a meaningful prediction.   

The purpose of using the Box-Jenkins methodology is to be able to find the 

right number of previous values of a variable and its error term that are 

effectively relevant in determining its current or future value. The model 

involves three steps, namely, the model identification, model estimation and the 

diagnostic checking. In the first step, the researcher visually checks for the 

plots of correlation and partial correlation functions of a given variable in the 

variable’s correlogram. The shape of the correlogram that involves spikes, 

since waves and decays assist the researcher in determining the influential 

number of lagged values of the variable and the error term. Hence, the first step 

helps in identifying the right model. The second step involves estimating the 

model identified by the first step. In order to confirm the model prescribed in 

the first step is better than any other model, a few other closer ARIMA 

configurations are also tested to ensure the superiority of the one prescribed by 

the Box-Jenkins method. 
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The third stage of the Box-Jenkins method evaluates all the models on the 

basis of the Akaike Information Criterion (AIC), Schwarz Bayesian Criterion 

(SBC), Hannan-Quin Criterion (HQC), and the adjusted R
2
values. The authors 

of the model recommend selecting the model having the minimum information 

criterion values, the highest adjusted R
2
 and the least number of insignificant 

parameters. It is often observed, however, that over-parameterized models tend 

to be healthier than the ones having fewer parameters. Nonetheless, the 

principle of parsimony has to be kept into consideration. 

Research Methodology 

The current study employs the time series data of a single variable, i.e., the 

stock market index. Hence, univariate ARIMA model has been used to forecast 

the current/future value of the index. An ARMA process in its general fashion 

as adapted from Asteriou & Hall (2007) is as follows:  

Yt = φ1Yt-1 + φ2Yt-2+ - - - + φpYt-p+ εt + θ1εt-1 + θ2εt-2 + - - - +θqεt-q 

Where, 

Yt represents the variable we are interested in trying to predict, Yt-1, Yt-2,  Yt-p 

are the previous or lagged values of that variable (also called the autoregressive 

terms), εt is the disturbance or error term, εt-1, εt-2, - - - , εt-q are the previousor 

lagged values of the error term(also known as the moving average terms), φ1, 

φ2, - - - , φp are the coefficients of autoregressive terms, and θ1, θ2, - - - , θp are 

the coefficients of the moving average regressors. 

It is noteworthy that for an ARMA process to work, the variable must be 

stationary --- the one that has a constant long-run mean and a time-invariant 

covariance (Gujarati & Porter, 2004). This is seldom a case in time series data 

where the data are often highly integrated. Such was the case for our variable 

too, and the series was found to be integrated of order 1 meaning that it had to 

be differenced for once. Therefore, stock index returns were taken for the 

analyses which were computed by dividing the first difference of the index 

over its previous value for all observations. Thus the study employed ARIMA 

(p, 1, q) model. 

For analysis, monthly figures of Karachi Stock Exchange (now Pakistan 

Stock Exchange) were taken for 22 years from August 1997 to August 2019 

which rendered 266 observations making the sample large enough to be 

considered for ARIMA analysis (Chatfield, 1996). 
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Results and Findings 

Before subjecting the data for ARMA analysis, the variable KSE 100 Index was 

checked for any trends or non-stationary element. This was made possible 

through line graph, unit root test and the correlogram of the variable. The 

following table represents the line graph of the variable clearly showing trends 

in the data. 
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Figure 1: The Non-Stationary KSE 100 Index 

The figure just presented speaks loudly of the presence of trends in the 

data. Of course such data is not suitable for ARMA calculations. In cases where 

a time series is integrated or trended, an integrated version of the ARMA 

process, known as the ARIMA process, is implemented which smoothens out 

any trends in the variable by taking the required number of differences. But 

before this is done, the (non-) stationarity of our variable is also verified 

through the augmented dickey fuller statistic which too advocates in favor of its 

trended nature. The table that follows presents the ADF test result being highly 

insignificant. 

Table 1: Augmented Dickey Fuller Test for KSE 100 Index 

Augmented Dickey-Fuller test 

statistic 
t-Statistic   Prob. 

 -.445  .898 

Test 

critical 

values: 

1% level 
 

-3.455 
 

5% level 
 

-2.872 
 

10% level   -2.573   

Null Hypothesis: KSE 100 Index has a unit root 

Exogenous: Constant; Lag Length: 0 (Automatic - based on SIC, maxlag=15) 
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Theoretically, the correlogram of a trended variable should not die down or 

fade away as the lag length increases. The correlogram of KSE 100 index, as 

shown in table 2, also shows the same pattern hinting towards the fact that the 

index is non-stationary. 

Table 2 Autocorrelation and Partial Autocorrelation Function of KSE 100 Index 

Autocorrelation 
Partial 

Correlation  
AC PAC Q-Stat Prob 

.|******* .|******* 1 0.993 0.993 266.11 0.00 

.|******* .|.     | 2 0.986 0.043 529.7 0.00 

.|******* *|.     | 3 0.978 -0.11 789.94 0.00 

.|******* *|.     | 4 0.969 -0.07 1046.4 0.00 

.|******* *|.     | 5 0.959 -0.09 1298.6 0.00 

.|******* .|.     | 6 0.949 0 1546.3 0.00 

.|******* *|.     | 7 0.937 -0.1 1788.9 0.00 

.|******* .|.     | 8 0.926 0.027 2026.6 0.00 

.|******* .|.     | 9 0.914 -0.02 2259.1 0.00 

.|******* .|.     | 10 0.903 0.055 2486.9 0.00 

.|******| *|.     | 11 0.891 -0.07 2709.4 0.00 

.|******| .|.     | 12 0.878 -0.05 2926.5 0.00 

.|******| .|.     | 13 0.865 -0.01 3138 0.00 

.|******| .|.     | 14 0.852 -0.03 3343.9 0.00 

Following the requirements that are to be met for using an ARMA process, 

the monthly index has been transformed into monthly returns in order to induce 

stationarity in the series. 

The following graph portrays the monthly returns behavior of KSE 100 

index which has now become stationary. Since returns are computed by taking 

first differences, it can therefore be concluded that KSE 100 index is stationary 

at first differences. 
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Figure 2: The Stationary KSE 100 Index Monthly Returns 

To further ensure that the returns have become fully stationary and that the 

analysis can now be safely initiated, the augmented dickey fuller test has been 

run. The results indicate that the statistic is highly significant at 1% level 

leaving no doubt that KSE 100 index returns have no unit root (see table 3). 

Table 3: Augmented Dickey-Fuller Test for KSE 100 Index Returns 

Augmented Dickey-Fuller test 

statistic 
t-Statistic   Prob. 

-15.841  .000 

Test 

critical 

values: 

1% level 
 

-3.455 
 

5% level 
 

-2.872 
 

10% level   -2.573   

Null Hypothesis: KSE 100 Index has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=15) 

Model Identification 

After inducing stationarity in the variable, the Box-Jenkins methodology is 

applied. Stage 1 of the methodology is meant to identify the most suitable 

model. This involves finding the number of lagged values of the variable and 

that of the error term sufficient to explain the variable. Hence we start by 

making a correlogram of the variable, i.e., the stock index returns, to check for 

the number of positive spikes in the correlation and partial correlation columns 

which will help us in identifying the right number of the autoregressive and 

moving average terms necessary for predicting the variable. 

Table 4 presents a correlogram of the monthly returns of KSE 100 Index 

covering the period from August 1997 to August 2019. 
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Table 4:  Autocorrelation and Partial Autocorrelation Functions of KSE 100 

Index Returns 

Autocorrelation 
Partial 

Correlation  
AC PAC Q-Stat Prob 

       .|.     |        .|.     | 1 .027 .027 0.197 0.66 

       .|.     |        .|.     | 2 .037 .036 0.563 0.76 

       .|.     |        .|.     | 3 -.049 -.051 1.222 0.75 

       .|.     |        .|.     | 4 .038 .040 1.620 0.81 

       .|*     |        .|*     | 5 .097 .099 4.164 0.53 

       .|.     |        .|.     | 6 .065 .055 5.306 0.51 

       .|.     |        .|.     | 7 -.032 -.040 5.595 0.59 

       .|.     |        .|*     | 8 .073 .080 7.050 0.53 

       .|.     |        .|.     | 9 .045 .045 7.614 0.57 

       .|.     |        .|.     | 10 -.006 -.033 7.625 0.67 

       .|.     |        .|.     | 11 -.001 -.005 7.625 0.75 

       .|.     |        .|.     | 12 -.020 -.015 7.740 0.81 

       .|.     |        .|.     | 13 -.007 -.022 7.752 0.86 

       .|.     |        .|.     | 14 -.013 -.031 7.803 0.90 

At first glance, the aforementioned table seems to give no clue of how 

many autoregressive and moving average terms to retain. Up until the first four 

terms of both autocorrelation and partial correlation columns, no significant 

spikes can be seen on either direction. However, on the fifth term, there are 

small but positive and visible spikes on both columns. This signals towards a 

strange and apparently over-parameterized ARIMA (5, d, 5) model. In the next 

stage, however, we will also check for models that are simpler (having lesser 

parameters) than the one formulated through the Box-Jenkins approach in the 

hope that we may explore a model that is more parsimonious. 

Model Estimation  

In this stage, we will again be trying to identify the most appropriate ARIMA 

configuration by estimating several probable models along with the one 

prescribed by the Box-Jenkins methodology. We start with ARIMA (5, d, 5). 

Table 5: Regression Results Using ARIMA (5, d, 5) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.014 0.006 2.39 0.02 

AR(1) 0.242 0.079 3.064 0.00 

AR(2) 0.14 0.055 2.533 0.01 

AR(3) -0.27 0.042 -6.461 0.00 

AR(4) -0.248 0.057 -4.34 0.00 
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AR(5) 0.77 0.069 11.232 0.00 

MA(1) -0.195 0.084 -2.316 0.02 

MA(2) -0.138 0.058 -2.361 0.02 

MA(3) 0.253 0.042 6.087 0.00 

MA(4) 0.37 0.058 6.352 0.00 

MA(5) -0.868 0.082 -10.533 0.00 

Dependent Variable: KSE 100 Index Monthly Returns 

Method: Least Squares; Included observations: 261 after adjustments 

The results given in table 5 of ARIMA (5, d, 5) look impressive as all of the 

10 coefficients are highly significant. The adjusted R
2
 is 13.7% and the SBC is -

2.06. We, however, cannot be sufficiently certain about whether there exists a 

model any better than ARIMA (5, d, 5) unless we check for these other 

possibilities. 

Since ARIMA (5, d, 5) seems to be a bit over-parameterized, we will try 

making use of models that are more parsimonious. Let’s attempt using ARIMA 

(3, d, 3). 

Table 6: Regression Results Using ARIMA (3, d, 3) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.014 0.006 2.471 0.014 

AR(1) 0.728 0.084 8.692 0.00 

AR(2) -0.753 0.03 -24.716 0.00 

AR(3) 0.819 0.077 10.603 0.00 

MA(1) -0.684 0.088 -7.814 0.00 

MA(2) 0.792 0.02 39.494 0.00 

MA(3) -0.886 0.086 -10.251 0.00 

R-squared 0.094 Mean dependent var 0.011 

Adjusted R-squared 0.073 S.D. dependent var 0.084 

S.E. of regression 0.081 Akaike info criterion -2.159 

Sum squared resid 1.686 Schwarz criterion -2.063 

Log likelihood 290.846 Hannan-Quinn criter. -2.12 

F-statistic 4.428 Durbin-Watson stat 2.05 

Prob (F-statistic) 0       

Dependent Variable: KSE 100 Index Monthly Returns 

Method: Least Squares 

Included observations: 263 after adjustments 

The model ARIMA (3, d, 3), presented in table 6, also has all parameters 

significant. However, at 7.3%, it has a lower adjusted R
2
 than that for ARIMA 

(5, d, 5). The other information criteria values are closely comparable for the 

two models. Nonetheless, a visible difference in the adjusted R
2
 values for the 

two models suggests an upper edge for ARIMA (5, d, 5). 
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In time series forecasting, many authors have found that models with fewer 

parameters tend to forecast better. The models ARIMA (1, d, 1) and ARIMA (1, 

d, 0) are of course one of the simplest ones used very frequently by the 

academic community. We need to check whether these models can come up 

with better solution to our problem than the previous models checked by us so 

far. So we now examine ARIMA (1, d, 1). 

Table 7: Regression Results Using ARIMA (1, d, 1) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.011 0.005 2.061 0.040 

AR(1) -0.116 0.593 -0.196 0.845 

MA(1) 0.138 0.594 0.233 0.816 

R-squared 0.001 Mean dependent var 0.011 

Adjusted R-squared -0.007 S.D. dependent var 0.084 

S.E. of regression 0.084 Akaike info criterion -2.098 

Sum squared resid 1.861 Schwarz criterion -2.058 

Log likelihood 281.013 Hannan-Quinn criter. -2.082 

F-statistic 0.134 Durbin-Watson stat 1.984 

Prob (F-statistic) 0.874       

Dependent Variable: KSE 100 Index Monthly Returns 

Method: Least Squares; Included observations: 263 after adjustments 

Surprisingly, the model ARIMA (1, d, 1) presented in table 7 has very a 

week position with all its parameters being insignificant. Also, the model has a 

very low, in fact an unrealistic, adjusted R
2
 value which is negative meaning 

that this model is not an option at all for our case. 

Perhaps we have gone a bit too simple in our estimation this time, whereas 

our variable, on the other hand, demands a bit more parameters to be forecasted 

well. So this time, we increase slightly the number of parameters to find that 

lowest point at which our results are legitimately acceptable.  

Table 8: Regression Results Using ARIMA (2, d, 1) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.011 0.005 1.976 0.049 

AR(1) -0.754 0.332 -2.271 0.024 

AR(2) 0.061 0.063 0.958 0.339 

MA(1) 0.786 0.330 2.383 0.018 

R-squared 0.007 Mean dependent var 0.011 

Adjusted R-squared -0.004 S.D. dependent var 0.084 

S.E. of regression 0.084 Akaike info criterion -2.094 

Sum squared resid 1.848 Schwarz criterion -2.039 
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Log likelihood 280.352 Hannan-Quinn criter. -2.072 

F-statistic 0.615 Durbin-Watson stat 1.992 

Prob (F-statistic) 0.606       

Dependent Variable: KSE 100 Index Monthly Returns 

Method: Least Squares; Included observations: 264 after adjustments 

The aforementioned table presents ARIMA (2, d, 1).Again the model is a 

complete failure in many respects with its most important deficiency being the 

unrealistic value of the adjusted R
2
. There is also one insignificant parameter in 

the model. 

In search of a simpler model than the Box-Jenkins’ identified ARIMA (5, d, 

5), let us also attempt to estimate ARIMA (2, d, 2). 

Table 9: Regression Results using ARIMA (2, d, 2) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.011 0.005 2.017 0.045 

AR(1) 0.008 0.046 0.163 0.871 

AR(2) -0.914 0.041 -22.159 0.000 

MA(1) 0.045 0.036 1.246 0.214 

MA(2) 0.945 0.033 28.483 0.000 

R-squared 0.043 Mean dependent var 0.011 

Adjusted R-squared 0.028 S.D. dependent var 0.084 

S.E. of regression 0.083 Akaike info criterion -2.123 

Sum squared resid 1.781 Schwarz criterion -2.055 

Log likelihood 285.256 Hannan-Quinn criter. -2.096 

F-statistic 2.928 Durbin-Watson stat 2.041 

Prob (F-statistic) 0.021       

Dependent Variable: KSE 100 Index Monthly Returns 

Method: Least Squares; Included observations: 264 after adjustments 

Table 9 presents ARIMA (2, d, 2). Both the autoregressive and the moving 

average terms are insignificant for the first order and significant for the second 

order. Overall there are two insignificant terms in the model. The adjusted R
2
 is 

merely 2.8% --- much lower than what it was for ARIMA (5, d, 5) and ARIMA 

(3, d, 3). In the next stage of the Box-Jenkins methodology, however, we will 

extend our search of finding the most parsimonious, yet the most practical, 

model by checking for the performance of a few more models along with their 

comparison. 

Diagnostic Checking 

Discussion in the previous section alluded that ARIMA (5, d, 5) is the probably 

the most suitable model for our variable. We, however, will estimate a few 

more models in the diagnostic checking stage to ensure all the possible models 
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that could forecast the stock returns are checked out. The following table 

compares, therefore, 10 separate ARIMA configurations on the basis of their 

adjusted R
2
, AIC, SBC, HQC values and the number of insignificant 

parameters. 

Table 10:  Comparing ARIMA models: The rows with bold figures indicate 

the most apt models 

ARIMA Model 
Adjusted 

R
2
 

AIC SBC HQC 
Insignificant 

lags 

ARIMA (1, d, 0) -0.003 -2.105 -2.078 -2.095 One 

ARIMA (1, d, 1) -0.007 -2.098 -2.058 -2.082 Two 

ARIMA (2, d, 1) -0.004 -2.094 -2.039 -2.072 One 

ARIMA (3, d, 1) -0.005 -2.085 -2.018 -2.058 Two 

ARIMA (1, d, 2) -0.007 -2.094 -2.04 -2.073 Three 

ARIMA (1, d, 3) -0.008 -2.089 -2.021 -2.062 Four 

ARIMA (2, d, 2) 0.028 -2.123 -2.055 -2.096 Two 

ARIMA (3, d, 3) 0.073 -2.159 -2.063 -2.12 None 

ARIMA (4, d, 4) 0.072 -2.149 -2.027 -2.1 Two 

ARIMA (5, d, 5) 0.137 -2.21 -2.06 -2.15 None 

Of the 10 models presented in table 10, ARIMA (5, d, 5) undoubtedly takes 

the lead in many respects. For one thing, ARIMA (5, d, 5) has the highest value 

of adjusted R
2
. The model also minimizes all the information criterion values 

and has no insignificant parameters.  

In comparison with ARIMA (5, d, 5), a rather simpler ARIMA (3, d, 3) also 

has a better performance than the rest of the possibilities except for ARIMA (5, 

d, 5). So ARIMA (3, d, 3) stands second in ranking after ARIMA (5, d, 5) in 

terms of its forecast ability. All the other models in the table are a complete no-

choice owing to their very poor performance in forecasting our variable of 

interest. Hence it has been established that the Box-Jenkins’ prescribed ARIMA 

(5, d, 5) works best for forecasting monthly returns of KSE 100 Index. 

Discussion 

The third stage of the Box-Jenkins methodology has shown ARIMA (5, d, 5) to 

be the most appropriate model for predicting stock market index. Although 

many previous studies have suggested much simpler models (with lesser 

parameters) for forecasting their variables of interest, the fact that ARIMA (5, d, 

5), in our case, has the highest adjusted R
2
 value and the least AIC, SBC and 

HQC values makes it irresistible to be deemed as the best model. 
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Looking at the previous literature with regard to time series forecasting, it 

is evident that many attempts have been made making use of the ARIMA 

technique with a good success ratio. It should, however, also be noted that 

most, if not all, of the previous studies have concluded by suggesting models 

for their time series that were as simple or parsimonious as ARIMA (1, d, 0) or 

ARIMA (1, d, 1). The current study, on the other hand, proposes a rather 

unusually over-parameterized model for prediction of its variable of interest. 

However, this should not be a matter of some serious concern as some time 

series need a longer run to be predicted better. 

Speaking in a broader context, however, results of the study are in line with 

previous works which have also successfully attempted to forecast stock 

returns through ARIMA modeling. For instance, Mondal, Shit and Goswami 

(2014) used ARIMA model to predict stock prices of as many as 56 Indian 

companies and found that 85% of the firms they selected in their study were 

forecasted precisely. In the same manner, Adebiyi, Adewumi and Ayo (2014) 

also attempted to predict stock prices through Box-Jenkins method and found 

that the method was superior to the conventional methods of forecasting. 

There also have been few studies conducted to estimate variables other 

than stock returns using ARIMA. Manoj and Madhu (2014), for example, 

employed the model for anticipating Sugarcane production in India. Their 

findings revealed the model quite helpful. ARIMA (2, d, 1) was the most 

suitable configuration for their study. Similarly, Hamjah (2014) also made use 

of the model for predicting rice production in Bangladesh and concluded that 

the model had a decent short-term prediction ability. 

To summarize, the current study is in line with previous literature in that 

ARIMA model is very efficient in predicting various time series in the short run. 

However, the current study has ended up with the selection of a very over-

parameterized model that engages five previous values of the variable along 

with five lagged values of the error term. This makes the current study 

somewhat atypical in its results in the sense that no previous study has so far 

conceived an ARIMA model with as many parameters as the one this study has 

suggested. 

Conclusion 

Stock markets all over the world are considered to be indicators of the 

economy’s financial health. They indicate how much of an investment 

opportunity is there in a given region. When the stock market index grows, it 

develops people’s confidence over the market and they throw more money for 

investment. Conversely, an ever-decreasing index agitates the investment 

community making them reluctant to bet their hard-earned money in the stock 
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market. But the stock market more often experiences a haphazard behavior and 

there is no established trend, either upward or downward, in the short run. 

Although most stock market indices do grow in the long run, predicting the 

index in the short run is what makes the matter somewhat complicated. 

If investors somehow find the way to efficiently forecasting the stock 

market index, they would gain much confidence required to invest in the risky 

venture. This paper has attempted to help investors forecast stock market index 

returns in the short run. The study used the ARIMA technique executed through 

the Box-Jenkins methodology in which predictions about the future value of a 

given variable are made on the basis of the past values of that variable as well 

as on the past values of the error term. The study took monthly data of stock 

market index for 22 years and found that ARIMA model was reasonably 

effective in speculating the returns expected from Karachi Stock Exchange 100 

Index. It is positively expected that the current work will guide prospective 

short-term stock market investors in determining when, and when not, to 

devote their excess reserves in their stock portfolios. 

 

References 

Adebiyi, A., Adewumi, A., & Ayo, C. (2014). Stock Price Prediction Using the 

ARIMA Model. Paper presented at the 2014 UKSim-AMSS 16th 

International Conference on Computer Modeling and Simulation, 

Cambridge University, United Kingdom. Retrieved from http://ijssst.info/ 

Vol-15/No-4/data/4923a105.pdf. 

Asteriou, D., & Hall S. (2007). Applied Econometrics. Edition. Palgrave 

Macmillan, New York, USA. 

Banerjee, D. (2014). Forecasting of Indian Stock Market Using Time-Series 

ARIMA Model. Paper presented at the 2
nd

 International Conference on 

Business & Information Management (pp. 131-135). Durgapur, India. 

IEEE.  

Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. 

San Francisco: Holden-Day, California, USA. 

Chatfield, C. (1996). The Analysis of Time Series (5
th

 Ed.). Chapman & 

Hall, New York. 

Contreras, J., Espinola, R., Nogales, F., & Conejo, A. (2003). ARIMA models 

to predict next day electricity prices. IEEE Transactions on Power Systems, 

18(3), 1014- 1020.  

http://ijssst.info/


 

Afeef, et al. 

296 Vol. 5, Issue 2 ISSN 2414-2336 (Print), ISSN 2523-2525 (Online) 

 

Gay, R. (2016). Effect of macroeconomic variables on stock market returns for 

four emerging economies: Brazil, Russia, India, and China. International 

Business & Economics Research Journal, 15(3), 119-126. 

Gilbert, K. (2005). An ARIMA Supply Chain Model, Management Science, 

51(2), 305-310. 

Gould, P. (1981). Letting the data speak for themselves. Annals of the 

Association of American Geographers, 71(2), 166-176. 

Guha, B., & Bandyopadhyay, G. (2016). Gold Price Forecasting using ARIMA 

Model. Journal of Advanced Management Science, 4(2), 117-121. 

Gujarati, D., & Porter, D. (2004). Basic Econometrics (4
th

 Ed.). McGraw-

Hill, New York, USA. 

Hamjah, M. (2014). Rice production forecasting in Bangladesh: An 

application of Box-Jenkins ARIMA Model. Mathematical Theory and 

Modeling, 4(4), 1-11. 

Jadhav, V., Reddy, B., & Gaddi, G. (2017). Application of ARIMA Model 

for forecasting agricultural prices. Journal of Agricultural Science and 

Technology, 19(5), 981-992. 

Jarrett, J. E. (2010). Efficient markets hypothesis and daily variation in small 

Pacific-basin stock markets. Management Research Review, 33(12), 1128-

1139. 

Manoj, K., & Madhu, A. (2014). An application of time series ARIMA 

forecasting model for predicting sugarcane production in India. Studies in 

Business and Economics, 9(1), 81-94. 

Meyler, A., Kenny, G., & Quinn, T. (1998). Forecasting Irish inflation using 

ARIMA models. Central Bank and Financial Services Authority of Ireland 

Technical Paper Series, 1998(3), 1-48. 

Mondal, P., Shit, L., & Goswami, S. (2014). Study of effectiveness of time 

series modeling (ARIMA) in forecasting stock prices. International 

Journal of Computer Science, Engineering and Applications , 4(2), 13-

29. 

Padhan, P. (2012). Application of ARIMA model for forecasting agricultural 

productivity in India. Journal of Agriculture & Social Sciences, 8(2), 50–

56. 

Raymond Y. (1997). An application of the ARIMA model to real-estate 

prices in Hong Kong. Journal of Property of Finance, 8(2), 152-163. 

http://clutejournals.com/index.php/IBER/article/view/9676
http://clutejournals.com/index.php/IBER/article/view/9676
https://www.emeraldinsight.com/author/Tse%2C+Raymond+YC

